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This paper investigates the use of independent modal control to suppress the vibration

of nonlinear flexible structures. In recent years technological improvements in the

mechanical field have led to high-performance systems with low weight and, as a

consequence, high flexibility and low damping. Here active control quickly bettered the

body flexible boom moved by hydraulic actuators. The nonlinear system dynamic was

numerically reproduced and a control strategy, based on the use of the same actuators,

was developed. Finally a test rig was created to validate the proposed approach

experimentally.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years vibration control has been increasingly used not only in aerospace research but also in many mechanical
application fields. The need for weight reduction to improve system performance led to structures with high flexibility and
low damping. These structures suffer fatigue and instability issues raising, as a consequence, a number of safety questions.
Traditional external passive control methods are generally more invasive, introducing mass into the structure, and less
effective in a large range of frequencies. On the other hand, active control is an attractive solution, especially considering
the extensive development of calculator hardware and the consequent cost reduction. Among the different control
techniques proposed in recent decades, modal control offers many advantages; thanks to its immediacy and connection to
the dynamic design of the system. Moreover the improvement of sensor and actuator technology and innovative algorithms
allows the spillover limits due to the truncated modes and unmodelled dynamic to be partly overcome.

In literature modal control was introduced by Balas [1] and Meirovitch [2] between the 1970s and 1980s. Balas’ studies
deal with vibration suppression in large spacecraft structures, applying the modal expansion theorem and modal control.
Some years later Meirovitch proposed an independent modal space control (IMSC) using the modal filter technique for
estimating the modal coordinates [3]. The method was further improved by Baz and Poh [4], who suggested a modified
independent modal space control (MIMSC) for optimal gain calculation adopting piezoelectric actuators.

Anyway Lin and Chu [5] demonstrated that modal control, for a general dynamic system with complex mode shapes,
does not assure stability even for the controlled modes. The spillover problems were partially cushioned by the use of
distributed sensor and actuators [6] and some applications of IMSC for the control of flexible linkage mechanism [7,8] can
be found. In 2001, Inman too [9] discussed the spillover issue associated with modal control, concluding that modern
technology makes the problem manageable.
All rights reserved.

: þ39 0223998492.

Ripamonti).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.10.021
mailto:francesco.ripamonti@polimi.it


ARTICLE IN PRESS

F. Resta et al. / Journal of Sound and Vibration 329 (2010) 961–972962
Moreover, modal control can be employed in conjunction with FEM for model definition, as shown by Skidmore [10] and
Khulief [11]. They studied an active control scheme for vibration suppression in a single beam/cable structure, considering
also its large motion. About this topic, to consider the deformability together with the system large motion, an interesting
approach based on the fictitious loads was proposed by Lin [12].

This paper deals with independent modal control on a multi-body (MB) nonlinear flexible boom. In particular
suppression of the vibration caused by the large motion of the structure was investigated. Because only a few modes
actively participate in describing the system’s dynamic behaviour, modal control is particularly useful.

The modal model required for the control law synthesis can be defined both experimentally, through a modal parameter
identification campaign, or numerically, by means of FEM. In the proposed work the boom’s FEM model is described.
The model not only allowed control/observer gain to be defined through pole placement techniques, but also
permitted numerical simulation. At the same time a test rig was created to validate the defined control law.
A comparison between the behaviour with and without control is proposed, highlighting some considerations on spillover
problems.

2. The system

The boom is composed of a number of segments, connected to each other with revolving joints (Fig. 1). Each segment’s
movement is generated by an hydraulic actuator through a kinematic chain assumed to be rigid.

Owing to the length and the low flexional stiffness of the section, the structure presents high flexibility producing, in
normal operating conditions, low frequency vibrations, generally associated with a low damping ratio.

As previously mentioned, a numerical model was developed as a tool both for defining the control logic and for
simulating boom behaviour. Initially a number of hypotheses were introduced:
�
 planar motion: the boom can be moved along two dimensions referred to as ðx; yÞ below;

�
 small deformations: as a consequence a linear relationship between strains and deformations was considered. In

addition, axial and bending deformations can be assumed to be decoupled; and

�
 small segment rotation speed: all centrifugal and Coriolis contributions can be neglected.

Thus this model has to be able to describe the large motion of the segments and their deformation due to flexibility.
To write the motion equations, the following reference systems (Fig. 2) were defined:
�
 ðO� x; yÞ is the global boom reference system, sited on the boom base;

�
 ðOj � xj; yjÞ is the j-th segment’s reference system; and

�
 ðOjk � xjk; yjkÞ is the reference system of the k-th finite element of the j-th segment.
The boom kinematics were solved using the ‘‘floating frame of reference’’ formulation [13]. This formulation describes the
motion as a sum of two contributions:
�
 the absolute displacement and rotation of the j-segment reference system ðOj � xj; yjÞ with respect to the absolute
reference system ðO� x; yÞ. The translation contribution can be written as a function of the degrees of freedom of the
previous segments, while the rotation contribution is described by the independent variable yj; and
Fig. 1. Layout of the flexible boom.
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Fig. 2. Link reference systems (a) and finite element reference systems (b).
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�
 the deformations of each segment with respect to its non-deformed configuration. This contribution is described, with
the finite element method (FEM), using the vector d, that contains the three independent coordinates of each node.

As a consequence, the total independent variable vector can be defined as

z ¼
h
d

( )
(1)

Using the Lagrange formulation, the boom’s nonlinear equation of motion was obtained using

½MðzÞ� €z ¼ f ðz; _z Þ þ ½KactðzÞ�
TFactðtÞ (2)

where ½MðzÞ� represents the inertial contribution; f ðz; _z Þ contains all the nonlinear damping, elastic and gravitational
terms; Fact represents the large motion actuator forces and ½KactðzÞ� represents the kinematic relationship between the
actuator length q and the independent coordinates vector ðzÞ.

Eq. (2) is a nonlinear equation because all the matrices depend on the motion variables and in particular on the segment
configuration.

To study the vibration problem and obtain system eigenvalues, the nonlinear equation can be evaluated and linearized
in each boom configuration. In a generic configuration of the system ‘‘z ¼ zi’’, Eq. (2) becomes

½Mi� � d €z i þ ½Ri� � d _z i þ ½Ki� � dz i ¼ f gðz iÞ þ ½Ki�
TFact (3)

where ½Mi� and ½Ki�, respectively, represent the inertial and elastic matrices, considering both the structural term and
the actuator contribution; the damping term ½Ri� is assumed to be proportional to the elastic and inertial terms. The
proportional coefficients are estimated from experimental data; f gðziÞ represents the constant contribution of the
gravitational term.

Owing to the low segment rotation speed, centrifugal and Coriolis terms were neglected.
The following paragraph presents and numerically/experimentally investigates a control logic for reducing the

structural vibrations.

3. Active control

In operating conditions, the system described earlier is subjected to a generic large motion which causes, because of the
high flexibility of the segments, significant vibration levels. To suppress these vibrations ðdzÞ, this paper proposes applying
a control action using the same actuators used to move the individual segments. As shown in Fig. 3, control forces uc work
in parallel with the large motion forces Fact.

The vibration control logic adopted is based on an independent modal approach [2]. Following this approach, the control
action is calculated starting from the system vibratory state and a suitably defined gain matrix. In particular the vibratory
state is described by a set of modal coordinates representing the system dynamics in the frequency range of interest. The
modal coordinates, which for a generic application cannot be measured directly (unless we use distributed sensors [6]),
have to be estimated by a modal observer. Below, the individual steps are analyzed in depth.

The control synthesis can be calculated starting from Eq. (3), without considering the gravitational and external forces
terms because these contributions do not modify the value of the poles:

½Mi� � d €z i þ ½Ri� � d _z i þ ½Ki� � dzi ¼ ½Ki�
Tuc (4)

The aim of the control force uc is to increase the system’s damping ratio in order to reduce vibrations by imposing new
values kc for the system’s original eigenvalues k. In particular the real part of the system’s eigenvalues was increased, while



ARTICLE IN PRESS

Fig. 3. Block diagram of the active control logic.
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the imaginary part remained unchanged so as to avoid having to use significant control forces and imposing additional
mechanical fatigue stress on the boom material.

This could be achieved using a state-space control method, such as pole placement. Considering a generic second-order
mechanical system and defining the state-space vector

x ¼
d _z i

dz i

( )
(5)

Eq. (4) can be written as

_x ¼
�½Mi�

�1½Ri� �½Mi�
�1½Ki�

½I� ½0�

" #
x þ

½Mi�
�1½Ki�

T

½0�

" #
uc ¼ ½Ai�x þ ½Bi�uc (6)

In a second-order system, the eigenvector matrix of the uncontrolled system can be written as [14]

½Ui� ¼
½Ui�½ki�

½Ui�

" #
(7)

where ½ki� represents the eigenvalue diagonal matrix of the state-matrix ½Ai�; ½Ui� contains, in its columns, information on
the modal shapes of the system.

Defining the control law as

uc ¼ �½Gi�x (8)

Eq. (6) becomes

_x ¼ ½½Ai� � ½Bi�½Gi��x ¼ ½Ai;c�x (9)

In the pole position control strategy, the gain matrix ½Gi� can be chosen so that the state matrix of the controlled system
½Ai;c� has the desired eigenvalues kc. For a multi-input system, other conditions can be imposed to obtain an analytical
formulation for ½Gi�. For example the controlled system eigenvectors can be set equal to those of the uncontrolled system
(½Ui;c� ¼ ½Ui�). In this case, ½Gi� can be calculated from an eigenvalue problem of ½Ai;c�

ð½Ai� � ½Bi�½Gi�Þ½Ui;c� ¼ ½Ui;c�½ki;c� (10)

where the matrix ½Ui;c� is defined by Eq. (7), with ½Ui;c� ¼ ½Ui� and eigenvalues ½ki;c�.
Remembering Eq. (10), it is possible to invert this relationship, obtaining the independent modal control gain

formulation in state-space approach

½Gi� ¼ ½½Bi�
�1 ½0��ð½Ai� � ½Ui;c�½ki;c�½Ui;c�

�1Þ (11)

where ½Bi� represents the upper part of ½Bi� (the lower part, for a mechanical second-order system, is equal to zero). This
formulation can be applied to any second-order system that has as many inputs as degrees of freedom (½B i� must be
square). In addition, the controllability of the system must be guaranteed.

As previously described, in the present work the motion equation was obtained using FEM discretization of the links.
This means that the variable vector z contains, as mentioned in par. 2, all the nodal displacement of the structure, and its
dimension is not compatible with the formulation presented in Eq. (11), because only three actuators are available on the
boom. Moreover, it should be considered that the structure dynamic is ruled only by the first modes, because high
frequency modes usually have higher damping ratios and they can hardly be excited.

For this reason a reduced modal system needs to be defined to describe boom motion using a limited set of coordinates,
taking into account the well-known problem of spillover.
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3.1. Independent modal control

Defining the complete modal coordinates vector as q
tot

and the partition of q
tot

containing only the m modal
coordinates considered as q

z
, we can perform the coordinate change

dz ¼ ½ui;tot�qtot
C½ui�qz

(12)

where ½ui;tot� represents the eigenvector matrix of ð½Mi�
�1½Ki�Þ, while ½ui� is a partition of ½ui;tot� containing only the

eigenvectors of the modes considered.
Applying Eq. (12) to Eq. (4), the motion equation becomes a set of independent modal equations

½mi� €q z
þ ½ri� _q z

þ ½ki�qz
¼ ½ui�

T½Ki�
Tuc (13)

where ½mi�, ½ri� and ½ki� are m�m diagonal matrices, obtained by

½mi� ¼ ½ui�
T½Mi�½ui�; . . . (14)

It should be noted that Eqs. (13) and (14) are only valid for systems with real modes. Anyway the examined system
damping is very small and its modes can be assumed real.

As an example, Fig. 4 shows the first (a) and the second (b) mode shape for the boom in the horizontal configuration.
To apply the state-space control approach to the reduced modal system, Eq. (13) can be written in state-space form:

_q ¼
�½mi�

�1½ri� �½mi�
�1½ki�

½I� ½0�

" #
q þ

½mi�
�1½ui�

T½Ki�
T

½0�

" #
uc ¼ ½Aq�q þ ½Bq�uc (15)

where

q ¼
_q

z

q
z

( )
(16)

Applying (11) to (15), the gain matrix ½Gm� can be calculated, and the control force uc is defined as

uc ¼ �½Gm� � q (17)

In this way, Eq. (15) becomes

_q ¼ ð½Aq� � ½Bq�½Gm�Þq ¼ ½Aq;c�q (18)

The disadvantage of the state-space approach is that the gain matrix values lose physical meaning. For this reason, the
modal control law proposed has been calculated imposing that the term ½ui�

T½Ki�
Tuc of (13) does not couple the system

modes and leads to an increase of the system damping ratio:

½ui�
T½Ki�

Tuc ¼ ½gv� � ð _q ref
� _q

z
Þ þ ½gp� � ðqref

� q
z
Þ (19)

where q
ref

and _q
ref

are the reference modal coordinates vectors, and are set to zero because the aim of control is to
eliminate vibrations. In this formulation ½gv� and ½gp� have a precise physical meaning, because they represent, respectively,
the increase in stiffness and damping ratio brought about by the control. To ensure independent modal control they must
be diagonal, so that the control law provides an independent stiffness and damping contribution on each mode, keeping
the same eigenvectors as the uncontrolled system. This condition can be obtained only if the number of actuators is equal
to the number of considered modal coordinates ðna ¼ mÞ. In addition, the system must be controllable, so any row or
Fig. 4. Numerical modal analysis of the boom in horizontal configuration: first (a) and second (b) mode shape.
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column of ½ui�
T½Ki�

T must be non-zero. This means that at least one control force must have a non-zero contribution on
every mode and each control force must act on at least one mode.

The control force can be calculated as

uc ¼ ð½ui�
T½Ki�

TÞ
�1
ð�½gv� � _q z

� ½gp� � qz
Þ ¼ �½Gv� � _q z

� ½Gp� � qz
(20)

selecting ½Gv� and ½Gp� so as to obtain the controlled system eigenvalues desired. In particular ½Gp�was set to zero to keep the
same natural frequencies as the uncontrolled system.
3.2. The modal observer

Assuming that the exact modal coordinates are known, the method proposed guarantees a completely decoupled modal
control and avoids spillover problems, even if the number of controlled modes is smaller than the number of structure
modes.

However, in most flexible structure control applications the modal coordinates are unknown and so have to be
estimated using a modal observer or filter [3]. In this case the control system is not immune to observation spillover
problems, as shown later. The implemented modal observer scheme is shown in Fig. 5.

According to Eq. (18), the observer equation can be written as

_̂q ¼ ½Aq;c�q̂ þ ½Go�ðl � l̂ Þ (21)

where ½Aq;c� is the state-space matrix of the controlled reduced modal system; ½Go� is the observer gain matrix, which will
be defined later; q̂ represents the estimated modal coordinates; and l and l̂ , respectively, represent the measures and
estimated measures vectors. l is an observer input, while l̂ is defined by

l̂ ¼ ½C�q̂ (22)

The values of ½C�, which link the estimated measures vector to the observer inputs, depend on sensor type (accelerometer,
position sensors, strain gauges, etc.).

Considering Eq. (22), the observer equation (21) becomes

_̂q ¼ ð½Aq;c� � ½Go�½C�Þq̂ þ ½Go�l ¼ ½Aq;o�q̂ þ ½Go�l (23)

To define the matrix ½C� it is important to underline that, in this paper, the sensors used to estimate modal coordinates were
accelerometers. We can define

mi ¼ ET
i � d €z (24)

where ET
i is a row vector that represents the relationship between the i-th accelerometer measure and the independent

coordinates (second-order time derivatives). Starting from (24), applied to the estimated state, and considering Eqs. (12)
and (15), each row of the ½C� matrix can be defined as

CT
i ¼ ðE

T
i Þ½uk�½Aq;c� (25)

where ½Aq;c� represents the upper part of the state space matrix ½Aq� defined in Eq. (18).
Fig. 5. Block diagram of the modal observer.
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Finally ½C� can be obtained combining the contributions as

½C� ¼

CT
1

^

CT
1

^

2
66664

3
77775 (26)

Now it is possible to define the last term of the observer, the gain matrix ½Go�, which is calculated using the pole placement
method. In this case a single-input observer (one accelerometer) has been implemented and the gain matrix ½Go� has been
calculated as

½Go� ¼ ½T�
�1ðao � aÞ (27)

where the column vectors a and ao contain the characteristic polynomial coefficients of the reduced modal state-space
matrix and observer state-space matrix (½Aq;c� and ½Aq;o�), while ½T��1 is known as the Toeplitz matrix [15].

4. Numerical-experimental analysis

In the previous paragraph the vibration control logic was defined. To test the adopted solution, a numerical and
experimental campaign was carried out. The test rig, introduced in par. 2, was fitted with
�
 three load cells, to read total actuator forces;

�
 three LVDT sensors, to obtain boom configuration; and

�
 one accelerometer used as the observer input and the boom vibration indicator, located at the end of the last segment.

As mentioned above, the motion of the system is described by a nonlinear Eq. (2). For this reason all control matrices need
to be updated at every step to make the control logic rigorous. This updating can be easily reproduced in the numerical
simulations, where there are no limits due to real-time issues.

However, the experimental application requires real-time calculation of control matrices, which means that each step
must be completed in about 1 ms. Normal microprocessors do not have enough power or speed to handle this time scale, so
an approximation must be applied. In any case, considering that the rotation speed of the segment (and so the matrix
variation) is lower with respect to the controller dynamic, this approximation does not compromise control efficiency and
two possible approaches can be adopted.

The first consists in calculating control matrices every n time steps, using the control board in a multi-tasking mode.
A faster method calculates the control forces every time step while the other method calculates them at longer intervals.

The second approach is to pre-calculate the matrices for a discrete set of boom configurations. In this way, at every time
step, the software simply needs to extract the nearest configuration matrices using linear interpolation. The actual boom
configuration, as mentioned, can be determined from the actuator LVDT output. The limit of this solution is the memory
available on the control board.

Considering the small amount of memory required by the present application, this second method (Fig. 6) was preferred
and implemented.

Fig. 7 shows the pole diagrams of the system with and without modal control (three modes). The controlled system and
observer pole are set as follows:
�
 the imaginary part of each controlled and observed pole is set equal to the imaginary part of the uncontrolled system.
This is because we are not interested in modifying the system frequencies since this is not the aim of the present work
and would lead to high control forces. As mentioned, a control force increase could lead to high mechanical stress and
fatigue problems;

�
 the real part of each controlled and observed pole is placed, respectively, equal to 10 and 30 percent of the

corresponding imaginary one, in order to set the controlled system damping ratio higher than that of the uncontrolled
boom; these values were chosen to maximize the closed-loop system damping ratio.
Fig. 6. Block diagram of the control implementation scheme.
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Fig. 7. Controlled system and observer eigenvalues position.

Fig. 8. Eigenvalues position with derivative control; root locus for different values of Kd (in the zoomed window).
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Fig. 7 shows the imposed pole position of the modal controller and the observer with respect to the uncontrolled system
poles. We can see that the closed loop poles are not in the place they were designed to be, but in an intermediate position.
This is because of the combination between the control and observer loop.

For comparison, the possibility of using a co-located control force was analyzed. This solution is the simplest one,
because it only requires the measurement of the actuator length q and is the most natural solution for adding damping to
the system. The resulting control force, where ½Kd� is a diagonal matrix

uc ¼ ½Kd� � ð _q ref
� _q Þ (28)

consists of a co-located derivative control, that increases the total damping of the system by adding a damping contribution
on the boom actuators. This solution is simpler than modal control. In fact it requires low computational effort and does not
compromise system stability.

However, this solution does not provide a large increase in the damping ratio. In fact this derivative action only works on
actuator vibrations, without considering the vibrations of the segments due to their flexibility.

As a consequence, even after optimization, only a small damping ratio increase is achieved. Fig. 8 shows the root locus of
the boom in the horizontally aligned configuration and the poles position with optimal derivative gains.
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4.1. Numerical analysis

This paragraph presents some numerical results. All the simulations refer to the numerical model of the test rig that was
used for the experiments. All the results (with and without vibration control) refer to the same large movement of the
boom (Fig. 9).

Fig. 10 compares the damping effect of the derivative term of co-located action and modal control. The acceleration of
the end of the third segment is considered as indicating control performance.

On the left, the figure shows the acceleration time history during the large motion described in Fig. 9. The time history
also includes static acceleration due to gravity.

On the right it shows, on a logarithmic scale, the acceleration spectrum with the application of an external force on
the first segment end. This simulation was carried out in the final configuration of the large motion shown in Fig. 9. The
external force consists of a frequency sweep up to 6 Hz, that involves the first three natural frequencies of the structure. The
figure shows that modal control causes a large reduction of vibrations near the controlled natural frequencies. However,
system response increases between these.

In any case, as Table 1 also presents, modal control can ensure a large increment in the boom damping ratio.
Fig. 9. Large motion reference for the boom segments; starting and final configuration (a), segment rotation time history (b).

Fig. 10. Numerical acceleration of the end of the third boom segment; time history (a) and spectrum (b).

Table 1
Comparison between the damping ratios of the first three modes of the boom in horizontal configuration with and without modal control.

Damping ratios (%) No control Co-located control Modal control

Mode 1 0.19 1.10 14.4

Mode 2 0.42 1.20 13.9

Mode 3 0.73 1.72 13.1



ARTICLE IN PRESS

F. Resta et al. / Journal of Sound and Vibration 329 (2010) 961–972970
4.2. Experimental results

This paragraph presents the results obtained on the test rig. The rig is composed of three segments, as shown in
Fig. 11.

As in the numerical case, the acceleration of the end of the third segment is considered to estimate control performance.
Fig. 12 shows the experimental results, obtained reproducing the same conditions as in the numerical simulations

(movement, control parameter, measurement instruments).
We can see that the test rig boom is subjected to observation spillover problems [9]. In particular, we can see that, in this

application, control forces make the fifth structure mode (the second uncontrolled one) unstable. This means that this
mode cannot be ignored in the boom dynamic, and must be included in the reduced system definition. This phenomenon is
not highlighted by the numerical simulations, where control matrices calculation is rigorous. In fact exactly the same
system was used both in the control synthesis and in the numerical motion integration. Moreover it must be considered
that the proportional damping factors of the numerical model has been calibrated to correctly reproduce the first three
modes damping ratios. This choice may have led to an over-estimation of the damping at the higher frequencies, increasing
Fig. 11. A picture of the test rig.

Fig. 12. Experimental acceleration of the end of the third boom segment with 3-modes observer; time history.
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Fig. 13. Experimental acceleration of the end of the third boom segment with 5-modes observer; time history (a) and spectrum (b).

Fig. 14. Numerical-experimental spectra comparison without (a) and with (b) modal control.

F. Resta et al. / Journal of Sound and Vibration 329 (2010) 961–972 971
the numerical integration stability. On the other side, in the experimental tests, the differences between the model and the
experimental test rig lead to a non-rigorously independent modal control law.

As a consequence, to solve the problem, a five modes observer was implemented, to avoid observation spillover
problems, while the control gain matrix remained the same, since only the feed-back of the first three modes was
considered. Fig. 13 shows the experimental results using the improved control settings. We can see that spillover problems
were resolved and good agreement with the numerical data was obtained.

In order to complete the numerical-experimental analysis, in Fig. 14 a comparison is shown.

5. Conclusions

In this paper a control strategy was implemented to suppress the vibrations induced in a nonlinear highly flexible boom
by its large motion. For this kind of structure the modal solution remains an attractive one for modelling the system
dynamics with a reduced number of degrees of freedom in a focused range of frequencies. As a consequence the nonlinear
active control logic adopted is based on the independent modal control theory, illustrated using the state-space
formulation. In the same way, a modal observer was implemented to estimate the non-measurable modal coordinates. The
control force is applied to the system through the same hydraulic actuators responsible for the boom’s large motion.

First this methodology was tested using numerical simulation, showing that an increase of the damping ratio of up to
about 15 percent could be achieved without affecting the large motion and reducing material stress during operation.

Finally a test rig was created and the methodology was experimentally validated. The experiments highlighted the need
to increase the number of observed modes to avoid instability problems due to spillover.
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